

- 1 Gas transfer velocities of CO₂ in subtropical monsoonal climate streams and
- 2 small rivers
- 3
- 4 Siyue Li^a*, Rong Mao^a, Yongmei Ma^a, Vedula V. S. S. Sarma^b
- 5 a. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of
- 6 Sciences, Chongqing 400714, China
- 7 b. CSIR-National Institute of Oceanography, Regional Centre, Visakhapatnam, India
- 8
- 9 Correspondence
- 10 Siyue Li
- 11 Chongqing Institute of Green and Intelligent Technology (CIGIT),
- 12 Chinese Academy of Sciences (CAS).
- 13 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing 400714, China.
- 14 Tel: +86 23 65935058; Fax: +86 23 65935000
- 15 Email: syli2006@163.com

16 Abstract

17	CO_2 outgassing from rivers is a critical component for evaluating riverine carbon
18	cycle, but it is poorly quantified largely due to limited measurements and modeling of
19	gas transfer velocity (k) in subtropical streams and rivers. We measured CO_2 flux
20	rates, k and partial pressure (pCO_2) in river networks of the Three Gorges Reservoir
21	(TGR) region, a typical area in the upper Yangtze River with monsoonal climate and
22	mountainous terrain. The observed k values (k_{600} =48.4±53.2 cm/h) were showed large
23	variability due to spatial variations in physical controls on surface water turbulence.
24	Our k measurements using chambers were comparable with model derived velocities.
25	Unlike in open waters, k is more pertinent to flow velocity and water depth in the
26	studied small rivers. Our results show that TGR river networks emitted approx. 1.4 Tg
27	CO_2 /y using varying approaches such as chambers, measured k and developed k
28	model. This study suggests that incorporating scale-appropriate k measurements into
29	extensive pCO_2 investigation is required to refine basin-wide carbon budgets in the
30	subtropical streams and small rivers. We concluded that simple parameterization of k
31	as a function of morphological characteristics was site specific and hence highly
32	variable. k models should be developed for stream studies to evaluate the contribution
33	of these regions to atmospheric CO ₂ .
34	
35	Key words: CO ₂ outgassing, riverine C flux, flow velocity, physical controls, Three

36 Gorge Reservoir, Yangtze River

37 **1. Introduction**

38	Rivers serve as a significant contributor of CO_2 to the atmosphere (Cole <i>et al.</i> ,
39	2007; Tranvik et al., 2009; Li et al., 2012; Raymond et al., 2013). As a consequence,
40	accurate quantification of riverine CO ₂ emissions is a key component to estimate net
41	continental carbon (C) flux (Bastviken et al., 2011). More detailed observational data
42	and new accurate measurement techniques are critical to refine the riverine C budgets
43	(Raymond and Cole, 2001; Li and Bush, 2015). Generally two methods are used to
44	estimate CO ₂ areal fluxes from the river system, such as direct measurements floating
45	chambers (FCs), and indirect calculation of thin boundary layer (TBL) model that
46	depends on gas concentration at air-water gradient and gas transfer velocity, k (Guerin
47	et al., 2007; Xiao et al., 2014). Direct measurements are normally laborious, while the
48	latter method shows ease and simplicity and thus is preferred (Butman and Raymond,
49	2011; Li et al., 2012; Li et al., 2013; Lauerwald et al., 2015; Ran et al., 2015).
50	The areal flux of CO ₂ (F, unit in mmol/m ² /d) via the water–air interface by TBL
51	is described as follows:
52	$\mathbf{F} = \mathbf{k} \times \mathbf{K}_{\mathbf{h}} \times \Delta p \mathbf{CO}_2 \tag{1}$
53	$K_{\rm h} = 10^{-(1.11 + 0.016 * \rm T - 0.00007 * \rm T^2)} $ (2)
54	where k (unit in m/d) is the gas transfer velocity of CO ₂ (also referred to as piston
55	velocity) at the <i>in situ</i> temperature (Li <i>et al.</i> , 2016). $\triangle pCO_2$ (unit in µatm) is the
56	air-water gradient of pCO_2 (Borges <i>et al.</i> , 2004a). K _h (mmol/m ³ /µatm) is the
57	aqueous-phase solubility coefficient of CO_2 corrected using temperature (T in C) (Li
58	<i>et al.</i> , 2016).

59	$\triangle pCO_2$ can be measured precisely in various aquatic systems, however, the
60	accuracy of the estimation of flux is depended on the k value. Broad ranges of k for
61	CO ₂ (Raymond and Cole, 2001; Borges et al., 2004a; Raymond et al., 2012) were
62	reported due to variations in techniques, tracers used and governing processes. k is
63	controlled by turbulence at the surface aqueous boundary layer, hence, k_{600} is
64	parameterized as a function of wind speed in open water systems of reservoirs, lakes,
65	and oceans (Borges et al., 2004b; Guerin et al., 2007; Wanninkhof et al., 2009). While
66	in streams and small rivers, turbulence at the water-air interface is generated by shear
67	stresses at streambed, thus k is modeled using channel slope, water depth, and water
68	velocity in particular (Alin et al., 2011; Raymond et al., 2012). Variable formulations
69	of k have been established by numerous theoretical, laboratory and field studies,
70	nonetheless, better constraint on k levels is still required as its levels are very
71	significant and specific due to large heterogeneity in hydrodynamics and physical
72	characteristics of river networks. This highlights the importance of k measurements in
73	a wide range of environments for the accurate upscaling of CO_2 evasion, and for
74	parameterizing the physical controls on k_{600} . However, only few studies provide
75	information of k for riverine CO ₂ flux in Asia (Alin et al., 2011; Ran et al., 2015), and
76	those studies do not address the variability of k in China's small rivers and streams.
77	Limited studies demonstrated that higher levels of k in the Chinese large rivers
78	(Alin et al., 2011; Ran et al., 2015; Liu et al., 2017; Ran et al., 2017), which
79	contributed to much higher CO ₂ areal flux particularly in China's monsoonal rivers
80	that are impacted by concentrated seasonal precipitation. The monsoonal flow pattern

- and thus flow velocity is expected to be different than other rivers in the world, as a
- 82 consequence, k levels should be different than others, and potentially is higher in
- 83 subtropical monsoonal rivers.
- 84 Considerable efforts, such as purposeful (Jean-Baptiste and Poisson, 2000;
- 85 Crusius and Wanninkhof, 2003) and natural tracers (Wanninkhof, 1992) and FCs
- 86 (Borges et al., 2004b; Guerin et al., 2007; Alin et al., 2011; Prytherch et al., 2017),
- 87 have been carried out to estimate accurate k values. The direct determination of k by
- FCs is more popular due to simplicity of the technique for short-term CO_2 flux
- measurements (Raymond and Cole, 2001; Xiao *et al.*, 2014; Prytherch *et al.*, 2017).
- 90 Prior reports, however, have demonstrated that k values and the parameterization of k
- 91 as a function of wind and/or flow velocity (probably water depth) vary widely across
- 92 rivers and streams (Raymond and Cole, 2001; Raymond et al., 2012). To contribute to
- this debate, extensive investigation was accomplished for determination of k in rivers
- and streams of the upper Yangtze using FC method. Our new contributions to the
- 95 literature are (1) providing first determination of k levels for small rivers and streams
- 96 in China, and (2) comparisons of two methods for CO_2 areal fluxes by FCs and
- 97 models developed. The outcome of this study is expected to help in accurate
- 98 estimation of CO_2 evasion from subtropical rivers and streams, and thus refine
- 99 riverine C budget over a regional/basin scale.

100

101 2. Materials and methods

102 **2.1. Study areas**

103	All field measurements were carried out in the rivers and streams of the Three
104	Gorges Reservoir (TGR) region (28°44′–31°40′N, 106°10′–111°10′E) that is locating
105	in the upper Yangtze River, China (Fig. S1). This region is subject to humid
106	subtropical monsoon climate with an average annual temperature ranging between15
107	and 19 °C. Average annual precipitation is approx. 1250 mm with large intra- and
108	inter-annual variability. About 75% of the annual total rainfall is concentrated in April
109	through September.
110	The river sub-catchments include large scale river networks covering the
111	majority of the tributaries of the Yangtze in the TGR region, i.e., 32 first-order
112	tributaries and 16 second-order tributaries. These tributaries have drainage areas that
113	vary widely from 100 to 4400 km^2 with width ranging from 1 m to less than 100 m.
114	The annual discharges from these tributaries have a broad spectrum of $1.8 - 112 \text{ m}^3\text{/s}$.
115	Detailed samplings were conducted in the two largest rivers of Daning (35 sampling
116	sites) and Qijiang (32 sites) in the TGR region. These two river basins drain
117	catchment areas of 4200 and 4400 km^2 with maximal third-order tributaries. The
118	location of sampling sites is deciphered in Fig. S1. The detailed information on
119	sampling sites and primary data are presented in the Supplement Materials (Appendix
120	Table A1). The sampling sites are outside the Reservoirs and are not affected by dam
121	operation.

2.2. Water sampling and analyses

124	Three fieldwork campaigns from the main river networks in the TGR region
125	were undertaken during May through August in 2016 (i.e., 18-22 May for Daning, 21
126	June-2 July for the entire tributaries of TGR, and 15-18 August for Qijiang). A total
127	of 115 discrete grab samples were collected (each sample consists of three replicates).
128	Running waters were taken using pre acid-washed 5-L high density polyethylene
129	(HDPE) plastic containers from depths of 10 cm below surface. The samples were
130	filtered through pre-baked Whatman GF/F (0.7- μ m pore size) filters on the sampling
131	day and immediately stored in acid-washed HDPE bottles. The bottles were
132	transported in ice box to the laboratory and stored at 4 $\ensuremath{\mathbb{C}}$ for analysis. Concentrations
133	of dissolved organic carbon (DOC), dissolved total nitrogen (DTN), and dissolved
134	total phosphorus (DTP) were determined within 7 days of water collection (Mao et al.,
135	2017).
136	Water temperature (T), pH , DO saturation (DO%) and electrical conductivity
137	(EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH,
137 138	(EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH, USA, and YSI 6600, YSI incorporated, USA). pH, the key parameter for pCO_2
137 138 139	(EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH, USA, and YSI 6600, YSI incorporated, USA). pH, the key parameter for pCO_2 calculation, was measured to a precision of ±0.002, and pH sonde is calibrated by the
137 138 139 140	(EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH, USA, and YSI 6600, YSI incorporated, USA). pH, the key parameter for pCO_2 calculation, was measured to a precision of ± 0.002 , and pH sonde is calibrated by the certified reference materials (CRMs) before measurements with an accuracy is better
137 138 139 140 141	 (EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH, USA, and YSI 6600, YSI incorporated, USA). pH, the key parameter for <i>p</i>CO₂ calculation, was measured to a precision of ±0.002, and pH sonde is calibrated by the certified reference materials (CRMs) before measurements with an accuracy is better than 0.2%. Atmospheric CO₂ concentrations were determined <i>in situ</i> using PP
 137 138 139 140 141 142 	 (EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH, USA, and YSI 6600, YSI incorporated, USA). pH, the key parameter for <i>p</i>CO₂ calculation, was measured to a precision of ±0.002, and pH sonde is calibrated by the certified reference materials (CRMs) before measurements with an accuracy is better than 0.2%. Atmospheric CO₂ concentrations were determined <i>in situ</i> using PP Systems EGM-4 (USA). Total alkalinity was measured using a fixed endpoint
 137 138 139 140 141 142 143 	(EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH, USA, and YSI 6600, YSI incorporated, USA). pH, the key parameter for <i>p</i> CO ₂ calculation, was measured to a precision of ±0.002, and pH sonde is calibrated by the certified reference materials (CRMs) before measurements with an accuracy is better than 0.2%. Atmospheric CO ₂ concentrations were determined <i>in situ</i> using PP Systems EGM-4 (USA). Total alkalinity was measured using a fixed endpoint titration method with 0.0200 mol/L hydrochloric acid (HCl) on the sampling day.
 137 138 139 140 141 142 143 144 	(EC) were measured <i>in situ</i> by the calibrated multi-parameter sondes (HQ40d HACH, USA, and YSI 6600, YSI incorporated, USA). pH, the key parameter for <i>p</i> CO ₂ calculation, was measured to a precision of ±0.002, and pH sonde is calibrated by the certified reference materials (CRMs) before measurements with an accuracy is better than 0.2%. Atmospheric CO ₂ concentrations were determined <i>in situ</i> using PP Systems EGM-4 (USA). Total alkalinity was measured using a fixed endpoint titration method with 0.0200 mol/L hydrochloric acid (HCl) on the sampling day. DOC concentration was measured using a total organic carbon analyzer (TOC-5000,

- 146 concentrations were determined using a continuous-flow autoanalyzer (AA3, Seal
- 147 Analytical, Germany) and/or spectrophotometer following peroxodisulfate oxidation
- 148 (Ebina *et al.*, 1983). Analytical reagent grade chemical were used for all experiments.
- 149 Wind speed at 1 m over the water surface (U_1) and air temperature (Ta) were
- 150 measured with a Testo 410-1 handheld anemometer (Germany). Wind speed at 10 m
- height (U_{10} , unit in m/s) was calculated using the following formula (Crusius and
- 152 Wanninkhof, 2003):

153
$$U_{10} = U_Z \left[1 + \frac{(C_{d10})^{1/2}}{K} \times \ln\left(\frac{10}{z}\right) \right]$$
 (3)

where C_{d10} is the drag coefficient at 10 m height (0.0013 m/s), and K is the von

155 Karman constant (0.41), and z is the height (m) of wind speed measurement. The

relationship was yielded when z=1 ($U_{10}=1.208 \times U_1$).

Aqueous pCO_2 was computed from the measurements of pH, total alkalinity, and water temperature using CO₂ system (k₁ and k₂ are from Millero, 1979), which have been identified as high quality data (Borges *et al.*, 2004a; Li *et al.*, 2012; Li *et al.*,

- 160 2013).
- 161

162 2.3. Water-to-air CO₂ fluxes using FC method

163 FCs (30 cm in diameter, 30 cm in height) were deployed to measure air-water

164 CO₂ fluxes and transfer velocities. They were made of cylindrical polyvinyl chloride

- 165 (PVC) pipe with a volume of 21.20 L and a surface area of 0.071 m^2 . These
- 166 non-transparent, thermally insulated vertical tubes, covered by aluminum foil, were

- 167 connected *via* CO₂ impermeable tubing (with outer and inner diameters of 0.5 cm and
- 168 0.35 cm, respectively) to a portable non-dispersive infrared CO₂ analyzer EGM-4
- 169 (PPSystems). Air was circulated through the EGM-4 instrument via an air filter using
- an integral DC pump at a flow rate of 350 ml/min. The chamber method was widely
- 171 used and more details of advantages and limits on chambers were reviewed elsewhere
- 172 (Borges et al., 2004b; Alin et al., 2011; Xiao et al., 2014).

173 Chamber measurements were conducted by deploying two replicate chambers or

- 174 one chamber for two times at each site. Data were logged automatically and
- 175 continuously at 1-min interval over a given span of time (normally 5-10 minutes) after
- enclosure. The CO₂ area flux $(mg/m^2/h)$ was calculated using the following formula.

177
$$\mathbf{F} = 60 \times \frac{dpco2 \times M \times P \times T_0}{dt \times V_0 \times P_0 \times T} H$$
(4)

- 178 Where $dpco_2/dt$ is the rate of concentration change in FCs ($\mu l/l/min$); M is the molar
- 179 mass of CO₂ (g/mol); P is the atmosphere pressure of the sampling site (Pa); T is the
- 180 chamber absolute temperature of the sampling time (K); V_0 , P_0 , T_0 is the molar
- volume (22.4 l/mol), P_0 is atmosphere pressure (101325 Pa), and T_0 is absolute
- 182 temperature (273.15 K) under the standard condition; H is the chamber height above
- the water surface (m) (Alin *et al.*, 2011). We accepted the flux data that had a good
- 184 linear regression of flux against time ($R^2 \ge 0.95$, p<0.01).

185

186 **2.4.** Calculations of the gas transfer velocity

187 The k was computed with eq (1). To make comparisons, k is normalized to a Schmidt

188 (Sc) number of 600 (k_{600}) at a temperature of 20 °C.

189
$$k_{600} = k_T (\frac{600}{S_{CT}})^{-0.5}$$
 (5)

190
$$S_{CT} = 1911.1 - 118.11T + 3.4527T^2 - 0.04132T^3$$
 (5)

- 191 Where k_T is the measured values at the *in situ* temperature (T, unit in $^{\circ}C$), S_{CT} is the
- 192 Schmidt number of temperature T. Dependency of k proportional to $Sc^{-0.5}$ was

193 employed here as measurement were made in highly turbulent rivers and streams in

- this study (Wanninkhof, 1992; Borges *et al.*, 2004b; Alin *et al.*, 2011).
- 195

196 2.5. Data processing

Prior to statistical analysis, we excluded k_{600} data for samples with the air-water

198 pCO_2 gradient <110 µatm, since the error in the k₆₀₀ calculations drastically enhances

- 199 when $\triangle p CO_2$ approaches zero (Borges *et al.*, 2004b). Spatial differences (Daning,
- 200 Qijiang and entire tributaries of TGR region) were tested using the nonparametric
- 201 Mann Whitney U-test. Multivariate statistics, such as correlation and stepwise
- 202 multiple linear regression, were performed for the models of k_{600} using potential
- 203 physical parameters, such as wind speed, water depth, and current velocity (Alin et al.,
- 204 2011). All statistical relationships were significant at p < 0.05. The statistical
- 205 processes were conducted using SigmaPlot 11.0 and SPSS 16.0 for Windows (Li et al.,
- 206 2009; Li *et al.*, 2016).
- 207

208 **3. Results**

3.1. CO₂ partial pressure and key water quality variables

210 The significant spatial variations in water temperature, pH, pCO_2 , DOC and

- 211 nutrients (DTN and DTP) were observed among Daning, TGR and Qijiang rivers
- whereas alkalinity did not display such variability (Fig. S2). *p*H varied from 7.47 to
- 213 9.38 (mean of 8.39 \pm 0.29) and lower *p*H was observed in TGR rivers (8.21 \pm 0.33)
- 214 (Table 1; Fig. S2). pCO_2 varied between 50 and 4830 µatm with mean of 846 ±819
- 215 µatm (Table 1), suggesting that all three rivers are supersaturated with reference to
- atmospheric CO_2 and act as a source for the atmospheric CO_2 . The pCO_2 levels were

217 2.1 to 2.6-fold higher in TGR rivers than Daning (483 \pm 294 µatm) and Qijiang

218 Rivers(614 \pm 316 µatm) (Fig. S2). The calculated *p*CO₂ levels were within the

- 219 published range, but towards the lower-end of published concentrations compiled
- elsewhere (Cole and Caraco, 2001; Li *et al.*, 2013). The total mean *p*CO₂ (846 μatm)
- 221 in the TGR, Danning and Qijiang sampled is lower than one third of global river's
- average (3220 µatm) (Cole and Caraco, 2001).

223 The higher concentrations of dissolved organic carbon (DOC) and dissolved

- 224 nutrients (DTN and DTP) (Fig. S3) were observed in the TGR rivers than Qijang and
- 225 Danning. Relatively higher concentrations of DOC and DTN were observed in Qijang
- than Daning River but mean TDP was much higher in latter than former river (Fig. S3;
- 227 Table 1).

228

3.2. CO₂ flux using floating chambers

- The calculated CO_2 areal fluxes were higher in TGR rivers (217.7 \pm 334.7
- 231 mmol/m²/d, n = 35), followed by Daning (122.0 \pm 239.4 mmol/m²/d, n = 28) and
- 232 Qijiang rivers (50.3 \pm 177.2 mmol/m²/d, n = 32) (Fig. 1). The higher CO₂ evasion

- from the TGR rivers is consistent with high riverine pCO_2 levels. The mean CO_2 233
- emission rate was 133.1 \pm 269.1 mmol/m²/d (n = 95) in all three rivers sampled. The 234
- mean CO_2 flux differed significantly between TGR rivers and Qijiang (Fig. 1). The 235
- ratio of mean to median of CO2 areal flux ranged between 1.4 (Qijiang) and 2.6 (TGR 236
- 237 rivers).

238

253

- 239 3.3. k levels
- 240 Samples with $\triangle pCO_2$ less than 110 µatm were excluded for k₆₀₀ calculations, thus 241 a total of 64 data were used (10 for Daning River, 33 for TGR rivers and 21 for Qijiang River) to develop k model (Table 2). No significant variability in k values 242 were observed among the three rivers sampled (Fig. 2). The mean k (unit in cm/h) is 243 244 relatively higher in Qijiang (60.2 \pm 78.9), followed by Daning (50.2 \pm 20.1) and TGR rivers (40.4 \pm 37.6), while the median k (unit in cm/h) was higher in Daning (50.5), 245 followed by TGR rivers (30.0) and Qijiang (25.8) (Fig. 2; Table S1). Binned k_{600} data 246 were averaged to 48.4 ± 53.2 cm/h (95% CI: 35.1-61.7), and it is 1.5-fold higher than 247 248 the median value (32.2 cm/h) (Fig. 2). 249 4. Discussion 250 We derived first-time the k values in the subtropical streams and small rivers. 251 252 Our measured k_{600} levels with a 95% CI of 35.1 to 61.7 (mean: 48.4) cm/h is compared well with a compilation of data for streams and small rivers (e.g., 3-70
- cm/h) (Raymond et al., 2012). Our determined k values are greater than the global 254

255	rivers' average (8 - 33 cm/h) (Butman and Raymond, 2011; Raymond et al., 2013),
256	and much higher than mean for tropical and temperate large rivers (5-31 cm/h) (Alin

- et al., 2011). These studies evidences that k_{600} values are highly variable in streams
- and small rivers (Alin et al., 2011; Ran et al., 2015). Though the mean k in the TGR,
- 259 Daning and Qijiang is higher than global mean, however, it is consistent with k values
- in the main stream and river networks of the turbulent Yellow River ($42 \pm 17 \text{ cm/h}$)

261 (Ran *et al.*, 2015), and Yangtze $(38 \pm 40 \text{ cm/h})$ (Liu *et al.*, 2017).

- 262 It has been well established that k is governed by a multitude of physical factors
- 263 particularly current velocity, wind speed, stream slope and water depth, of which,
- wind speed is the dominant factor of k in open waters such as large rivers and

estuaries (Raymond and Cole, 2001; Crusius and Wanninkhof, 2003; Borges et al.,

- 266 2004b; Alin *et al.*, 2011). In contrast k in small rivers and streams is closely linked to
- flow velocity, water depth and channel slope (Alin et al., 2011; Raymond et al., 2012).
- 268 Several studies reported that the combined contribution of flow velocity and wind
- speed to k is significant in the large rivers (Beaulieu *et al.*, 2012; Ran *et al.*, 2015).
- 270 Thus, k values are higher in the Yellow River (ca. 0-120 cm/h) as compared to the
- 271 low-gradient River Mekong (0-60 cm/h) (Alin et al., 2011; Ran et al., 2015), due to
- 272 higher wind speed and flow velocity in the Yellow River (1.8 m/s) than Mekong river
- 273 (0.9±0.4 m/s), resulting in greater surface turbulence and higher k level in the Yellow
- 274 $(42 \pm 17 \text{ cm/h})$ than Mekong river $(15 \pm 9 \text{ cm/h})$. The higher k values in the TGR,
- 275 Daning and Qjiang rivers are due to mountainous terrain catchment, high current
- velocity (10 150 cm/s) (Fig. 3b), bottom roughness, and shallow water depth (10 150 cm/s)

- 277 150 cm) (Fig. 3a). It has been suggested that shallow water enhances bottom shear,
- and the resultant turbulence increases k values (Alin et al., 2011; Raymond et al.,
- 279 2012). These physical controls are highly variable across environmental types (Figs.
- 280 3a and 3b), hence, k values are expected to vary widely (Fig. 2). The k values in the
- 281 TGR rivers showed wider range (1-177 cm/h; Fig. 2; Table S1), spanning more than 2
- orders of magnitude across the region, and it is consistent with the considerable
- variability in the physical processes on water turbulence across environmental settings.
- 284 Similar broad range of k_{600} levels was also observed in the China's Yellow basin (ca.
- 285 0-123 cm/h) (Ran et al., 2015; Ran et al., 2017).
- 286 Contrary to our expectations, no significant relationship was observed between
- k_{600} and water depth, and current velocity using the entire data in the TGR, Danning
- and Qjiang rivers (Fig. S5). There were not statistically significant relationships
- between k and wind speed and it is consistent with earlier studies (Alin *et al.*, 2011;
- 290 Raymond *et al.*, 2012). Flow velocity showed linear relation with k, and the extremely
- high value of k was observed during the periods of higher flow velocity (Fig. S5a).
- 292 Similar trend was also observed between water depth and k values (Fig. S5b). The
- 293 lack of strong correlation between k and physical factors are probably due to
- 294 combined effect of both flow velocity and water depth, as well as large diversity of
- 295 channel morphology, both across and within river networks in the entire catchment
- $(60, 000 \text{ km}^2)$. This is further collaborated by weak correlations between k and flow
- 297 velocity in TGR rivers (Fig. 3), where one or two samples were taken for a large scale
- examination. k_{600} as a function of water depth was obtained in TGR rivers, but it

299	explained only 30% of the variance in k_{600} . However, model using data from Qijiang
300	could explain 68% of the variance in k_{600} (Fig. 3b), and it was in line with general
301	theory. Nonetheless, k from our flow velocity based model (Fig. 3b) is largely
302	overestimated with consideration of other measurements (Alin et al., 2015; Ran et al.,
303	2015; Ran <i>et al.</i> , 2017). When several extremely values are removed, k_{600} (cm/h) is
304	parameterized as follows ($k_{600} = 62.879$ FV + 6.8357, R ² = 0.52, p=0.019, FV-flow
305	velocity with a unit of m/s), and this revised model is in good agreement with the
306	model in the river networks of the Yellow River (Ran et al., 2017), but much lower
307	than the model developed in the Yangtze system (Liu et al., 2017) (Fig. 3c). This is
308	reasonable because of k values in the Yangtze system are from large rivers with higher
309	turbulence than Yellow and our studied rivers. Furthermore, the measured k using FCs
310	was, on average, consistent with the revised model (Table 2).
311	The subtropical streams and small rivers are biologically more active and are
312	recognized to exert higher CO ₂ areal flux to the atmosphere, however, their
313	contribution to riverine carbon cycling is still poorly quantified because of data
314	paucity and the absence of k in particular. Larger uncertainty of riverine CO_2 emission
315	in China was anticipated by use of $k_{\rm 600}$ from other continents or climate zones. For
316	instance, k_{600} for CO ₂ emission from tributaries in the Yellow River and karst rivers
317	was originated from the model in the Mekong (Zhang et al., 2017), and Pearl (Yao et
318	al., 2007), Longchuan (Li et al., 2012), and Metropolitan rivers (Wang et al., 2017),
319	
	which are mostly from temperate regions. Our k values will therefore largely improve

- 321 to refine riverine carbon budget. More studies, however, are clearly needed to build
- the model, based on flow velocity and slope/water depth given the difficulty in k
- 323 quantification on a large scale.
- We compared CO_2 areal flux by FCs and models developed here (Fig. 3) and
- 325 other studies (Alin et al., 2011) (Tables 2 and 3). CO₂ evasion was estimated for rivers
- in China with k values ranged between 8 and 15 cm/h (Yao et al., 2007; Wang et al.,
- 327 2011; Li *et al.*, 2012) (Table S2). These estimates of CO₂ evasion rate were
- 328 considerably lower than using present k values (48.4 ± 53.2 cm/h). For instance, CO₂
- 329 emission rates in the Longchuan River (e.g., k=8 cm/h) and Pearl River tributaries
- 330 (e.g., k=8-15 cm/h) were 3 to 6 times higher using present k values compared to
- arlier. We found that the determined k average was marginally beyond the levels
- from water depth based model and the model developed by Alin et al (Alin *et al.*,
- 333 2011), while equivalent to the flow velocity based revised model, resulting in similar
- patterns of CO₂ emission rates (Table 2). Hence selection of k values would
- significantly hamper the accuracy of the flux estimation. Therefore k must be
- estimated along with pCO_2 measurements to accurate flux estimations.
- $We used our measured CO_2 emission rates by FCs for upscaling flux estimates$
- and it was found to be $1.39 \text{ TgCO}_2/\text{y}$ for all rivers sampled in our study (Table 3a).
- The estimated emission was close to that of the revised model (1.40 \pm 1.31 (95%)
- confidence interval: 0.91-1.87) Tg CO₂/y), and using the determined k average, i.e.,
- 341 1.37 ± 1.28 (95% confidence interval: 0.89-1.84) Tg CO₂/y, but slightly higher than
- the estimation using water-depth based model (1.08 \pm 1.01 Tg CO₂/y) and Alin's

- model (1.06 \pm 1.00 Tg CO₂/y) (Table 3b). The estimate was within the range of our
- earlier work using TBL on the TGR river networks (0.64-2.33 Tg CO₂/y) (Li *et al.*,
- 345 2018). The higher emission, i.e., 3.29 ± 3.08 (2.15-4.43) Tg CO₂/y, using flow
- velocity based model may be over-estimated (Table 3b). Therefore, this study
- 347 suggests that CO₂ emissions from rivers and streams in this area may be
- 348 underestimated, i.e., 0.03 Tg CO₂/y (Li et al., 2017) and 0.37-0.44 Tg CO₂/y (Yang et
- al., 2013) as the former used TBL model with a lower k level, and the latter employed
- 350 floating chambers, but they both sampled very limited tributaries (i.e., 2-3 rivers).
- 351 Therefore, measurements of k must be made mandatory along with pCO2
- 352 measurement in the river and stream studies.
- 353

354 5. Conclusion

355	We provided first determination of gas transfer velocity (k) in the subtropical
356	streams and small rivers. High variability in k values (mean 48.4 ± 53.2 cm/h) was
357	observed, reflecting the variability of morphological characteristics on water
358	turbulence both within and across river networks. The determined k using floating
359	chambers (FCs) was comparable to our newly water depth based model, while
360	substantially lower than flow velocity based model. We highlighted that k estimate
361	from empirical model should be pursued with caution and the significance of
362	incorporating k measurements along with extensive pCO_2 investigation is highly
363	essential for upscaling to watershed/regional scale carbon (C) budget.
364	Riverine pCO_2 and CO_2 areal flux showed pronounced spatial variability with

- much higher levels in the TGR rivers. The CO_2 areal flux was averaged at 133.1 \pm
- $269.1 \text{ mmol/m}^2/\text{d}$ using FCs, the resulting emission was around $1.39 \text{ Tg CO}_2/\text{y}$,
- 367 similar to the scaling up emission with the determined k, and the revised flow velocity
- 368 based model, while marginally above the water depth based model. More work is
- clearly needed to refine the k modeling for evaluating regional C budgets.
- 370

371 Acknowledgements

- 372 This study was funded by "the Hundred-Talent Program" of the Chinese Academy of
- 373 Sciences (R53A362Z10; granted to Dr. Li), and the National Natural Science
- Foundation of China (Grant No. 31670473). We are grateful to Mrs. Maofei Ni and
- 375 Tianyang Li, and Miss Jing Zhang for their assistance in the field works. Users can
- access the original data from an Appendix.

377 **References**

378 Alin, S.R., Maria, D.F.F.L.R., Salimon, C.I., Richey, J.E., Holtgrieve, G.W., Krusche, A.V., Snidvongs, A.,

- 2015. Physical controls on carbon dioxide transfer velocity and flux in low gradient river systems and
 implications for regional carbon budgets. Journal of Geophysical Research Biogeosciences 116,
 248-255.
- 382 Alin, S.R., Rasera, M., Salimon, C.I., Richey, J.E., Holtgrieve, G.W., Krusche, A.V., Snidvongs, A., 2011.
- 383 Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and
- 384 implications for regional carbon budgets. Journal of Geophysical Research-Biogeosciences 116.
- Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A., 2011. Freshwater Methane
 Emissions Offset the Continental Carbon Sink. Science 331, 50-50.
- Beaulieu, J.J., Shuster, W.D., Rebholz, J.A., 2012. Controls on gas transfer velocities in a large river.
 Journal of Geophysical Research-Biogeosciences 117.
- 389 Borges, A.V., Delille, B., Schiettecatte, L.S., Gazeau, F., Abril, G., Frankignoulle, M., 2004a. Gas transfer
- velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology &
 Oceanography 49, 1630-1641.
- 392 Borges, A.V., Delille, B., Schiettecatte, L.S., Gazeau, F., Abril, G., Frankignoulle, M., 2004b. Gas transfer
- velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology andOceanography 49, 1630-1641.
- Butman, D., Raymond, P.A., 2011. Significant efflux of carbon dioxide from streams and rivers in theUnited States. Nature Geoscience 4, 839-842.
- Cole, J.J., Caraco, N.F., 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic
 metabolism. Marine and Freshwater Research 52, 101-110.
- 399 Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen,
- P., Downing, J.A., Middelburg, J.J., Melack, J., 2007. Plumbing the Global Carbon Cycle: Integrating
 Inland Waters into the Terrestrial Carbon Budget. Ecosystems 10, 172-185.
- 402 Crusius, J., Wanninkhof, R., 2003. Gas transfer velocities measured at low wind speed over a lake.403 Limnology and Oceanography 48, 1010-1017.
- 404 Ebina, J., Tsutsui, T., Shirai, T., 1983. SIMULTANEOUS DETERMINATION OF TOTAL NITROGEN AND TOTAL
 405 PHOSPHORUS IN WATER USING PEROXODISULFATE OXIDATION. Water Research 17, 1721-1726.
- 406 Guerin, F., Abril, G., Serca, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., Varfalvy, L., 2007. Gas
- 407 transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine408 Systems 66, 161-172.
- Jean-Baptiste, P., Poisson, A., 2000. Gas transfer experiment on a lake (Kerguelen Islands) using He-3
 and SF6. Journal of Geophysical Research-Oceans 105, 1177-1186.
- Lauerwald, R., Laruelle, G.G., Hartmann, J., Ciais, P., Regnier, P.A.G., 2015. Spatial patterns in CO2
 evasion from the global river network. Global Biogeochemical Cycles 29, 534-554.
- Li, S., Bush, R.T., 2015. Revision of methane and carbon dioxide emissions from inland waters in India.
 Global Change Biology 21, 6-8.
- 415 Li, S., Bush, R.T., Ward, N.J., Sullivan, L.A., Dong, F., 2016. Air-water CO2 outgassing in the Lower Lakes
- 416 (Alexandrina and Albert, Australia) following a millennium drought. Science of the Total Environment417 542, 453-468.
- 418 Li, S., Gu, S., Tan, X., Zhang, Q., 2009. Water quality in the upper Han River basin, China: The impacts
- 419 of land use/land cover in riparian buffer zone. Journal of Hazardous Materials 165, 317-324.

- 420 Li, S., Ni, M., Mao, R., Bush, R.T., 2018. Riverine CO2 supersaturation and outgassing in a subtropical
- 421 monsoonal mountainous area (Three Gorges Reservoir Region) of China. Journal of Hydrology 558,422 460-469.
- Li, S., Wang, F., Luo, W., Wang, Y., Deng, B., 2017. Carbon dioxide emissions from the Three Gorges
 Reservoir, China. Acta Geochimica https://doi.org/10.1007/s11631-017-0154-6
- Li, S.Y., Lu, X.X., Bush, R.T., 2013. CO2 partial pressure and CO2 emission in the Lower Mekong River.
 Journal of Hydrology 504, 40-56.
- 427 Li, S.Y., Lu, X.X., He, M., Zhou, Y., Li, L., Ziegler, A.D., 2012. Daily CO2 partial pressure and CO2
- outgassing in the upper Yangtze River basin: A case study of the Longchuan River, China. Journal ofHydrology 466, 141-150.
- Liu, S., Lu, X.X., Xia, X., Yang, X., Ran, L., 2017. Hydrological and geomorphological control on CO2
 outgassing from low-gradient large rivers: An example of the Yangtze River system. Journal of
 Hydrology 550, 26-41.
- 433 Mao, R., Chen, H., Li, S., 2017. Phosphorus availability as a primary control of dissolved organic carbon
- biodegradation in the tributaries of the Yangtze River in the Three Gorges Reservoir Region. Science ofthe Total Environment 574, 1472-1476.
- 436 Prytherch, J., Brooks, I.M., Crill, P.M., Thornton, B.F., Salisbury, D.J., Tjernstrom, M., Anderson, L.G.,
- 437 Geibel, M.C., Humborg, C., 2017. Direct determination of the air-sea CO2 gas transfer velocity in Arctic
 438 sea ice regions. Geophysical Research Letters 44, 3770-3778.
- 439 Ran, L., Li, L., Tian, M., Yang, X., Yu, R., Zhao, J., Wang, L., Lu, X.X., 2017. Riverine CO2 emissions in the
- Wuding River catchment on the Loess Plateau: Environmental controls and dam impoundment impact.Journal of Geophysical Research-Biogeosciences 122, 1439-1455.
- Ran, L.S., Lu, X.X., Yang, H., Li, L.Y., Yu, R.H., Sun, H.G., Han, J.T., 2015. CO2 outgassing from the Yellow
 River network and its implications for riverine carbon cycle. Journal of Geophysical
 Research-Biogeosciences 120, 1334-1347.
- Raymond, P.A., Cole, J.J., 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity.
 Estuaries 24, 312-317.
- 447 Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl,
- R., Mayorga, E., Humborg, C., Kortelainen, P., Duerr, H., Meybeck, M., Ciais, P., Guth, P., 2013. Global
 carbon dioxide emissions from inland waters. Nature 503, 355-359.
- 450 Raymond, P.A., Zappa, C.J., Butman, D., Bott, T.L., Potter, J., Mulholland, P., Laursen, A.E., Mcdowell,
- W.H., Newbold, D., 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small
 rivers. Limnology & Oceanography Fluids & Environments 2, 41–53.
- 453 Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K.,
- 454 Fortino, K., Knoll, L.B., 2009. Lakes and reservoirs as regulators of carbon cycling and climate.
 455 Limnology & Oceanography 54, 2298-2314.
- 456 Wang, F., Wang, B., Liu, C.Q., Wang, Y., Guan, J., Liu, X., Yu, Y., 2011. Carbon dioxide emission from
- 457 surface water in cascade reservoirs-river system on the Maotiao River, southwest of China.
 458 Atmospheric Environment 45, 3827-3834.
- 459 Wang, X.F., He, Y.X., Yuan, X.Z., Chen, H., Peng, C.H., Zhu, Q., Yue, J.S., Ren, H.Q., Deng, W., Liu, H.,
- 460 2017. pCO(2) and CO2 fluxes of the metropolitan river network in relation to the urbanization of
- 461 Chongqing, China. Journal of Geophysical Research-Biogeosciences 122, 470-486.
- 462 Wanninkhof, R., 1992. RELATIONSHIP BETWEEN WIND-SPEED AND GAS-EXCHANGE OVER THE OCEAN.
- 463 Journal of Geophysical Research-Oceans 97, 7373-7382.

- 464 Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C., McGillis, W.R., 2009. Advances in Quantifying
- 465 Air-Sea Gas Exchange and Environmental Forcing. Annual Review of Marine Science 1, 213-244.
- 466 Xiao, S., Yang, H., Liu, D., Zhang, C., Lei, D., Wang, Y., Peng, F., Li, Y., Wang, C., Li, X., Wu, G., Liu, L., 2014.
- Gas transfer velocities of methane and carbon dioxide in a subtropical shallow pond. Tellus SeriesB-Chemical and Physical Meteorology 66.
- 469 Yang, L., Lu, F., Wang, X., Duan, X., Tong, L., Ouyang, Z., Li, H., 2013. Spatial and seasonal variability of
- 470 CO2 flux at the air-water interface of the Three Gorges Reservoir. Journal of Environmental Sciences471 25, 2229-2238.
- 472 Yao, G.R., Gao, Q.Z., Wang, Z.G., Huang, X.K., He, T., Zhang, Y.L., Jiao, S.L., Ding, J., 2007. Dynamics Of
- 473 CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical474 monsoon river in China. Science of the Total Environment 376, 255-266.
- 475 Zhang, T., Li, J., Pu, J., Martin, J.B., Khadka, M.B., Wu, F., Li, L., Jiang, F., Huang, S., Yuan, D., 2017. River
- 476 sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China. Science
- 477 of The Total Environment 609, 92-101.

478

479	Table 1	. Statistics	of all	the data	from rivers.

		Water T (⁰ C)	pН	Alkalinity (µeq/l)	$p\mathrm{CO}_2(\mu\mathrm{atm})$	DO%	DOC	TDN	TDP
							(mg/L)	(mg/L)	(µg/L)
Number		115	115	115	115	56	114	114	113
Mean		22.5	8.39	2589.1	846.4	91.5	6.67	2.42	65.9
Median		22.8	8.46	2560	588.4	88.8	2.51	1.56	50.7
Std. Deviation		6.3	0.29	640.7	818.5	8.7	7.62	2.38	56.3
Minimum		11.7	7.47	600	50.1	79.9	0.33	0.01	5.0
Maximum		34	9.38	4488	4830.4	115.9	37.48	10.54	298.5
Percentiles	25	16.3	8.24	2240	389.8	84.0	1.33	0.62	25.1
	75	29	8.56	2920	920.4	99.1	9.96	3.61	88.1
95% CI for Mean	Lower Bound	21.4	8.33	2470.8	695.2	89.1	5.26	1.98	55.4
	Upper Bound	23.7	8.44	2707.5	997.6	93.8	8.09	2.86	76.4

480

481 CI-Confidence Interval.

482	Table 2.	Comparison	of different	model for	CO2 areal	flux	estimation	(unit is
-----	----------	------------	--------------	-----------	-----------	------	------------	----------

483 mmol/m²/d for CO₂ areal flux and cm/h for k_{600}).

484

CO ₂ areal flux ^a		From FC	Flow velocity-based model (Fig. 3b)	Water depth-based model (Fig.3a)	Alin's model
k ₆₀₀		48.4 ^b	116.5 ^c	38.3	37.6
Mean		198.1	476.7	156.6	154.0
S.D.		185.5	446.2	146.6	144.2
95% CI for Mean	Lower Bound	129.5	311.5	102.3	100.6
	Upper Bound	266.8	641.8	210.8	207.4

485

486 CI-Confidence Interval

487 a- CO_2 areal flux is based on TBL model.

488 b-mean level that is determined using floating chambers (FC).

489 c-This figure is revised to be 49.6 cm/h if the model ($k_{600} = 62.879$ FV + 6.8357, R²=

490 0.52, p=0.019) is used (Fig. 3c), and the corresponding CO₂ areal flux is 203 ± 190

491 mmol/m²/d.

492

493	Table 3. CO2	emission	from tota	l rivers	sampled	in the	study.
-----	--------------	----------	-----------	----------	---------	--------	--------

(a) Upscaling using CO_2 areal flux by FC.					
	Catchment Area	Water surface	CO ₂ areal flux	CO ₂ emission	
	km ²	km ²	mmol/m ² /d	Tg CO ₂ /y	
Daning	4200	21.42	122.0 ± 239.4	0.042	
Qijiang	4400	30.8	50.3 ± 177.2	0.025	
TGR river	50000	377.78	$217.7\ \pm 334.7$	1.321	

495

Total

494

(b) Upscaling using determined k average and models (whole dataset are used here). 496

(b) Upscaling using determined k average and models (whole dataset are used here).						
From		From	Flow velocity-based model (Fig. 3b)	Water depth-based model	Alin's	
		determined	(numbers in bracket is from the	(Fig.3a)	model	
		k mean	revised model; Fig. 3c)			
Mean		1.37	3.29 (1.40)	1.08	1.06	
S.D.		1.28	3.08 (1.31)	1.01	1.00	
95% CI	Lower	0.89	2.15 (0.91)	0.71	0.69	
for	Bound					
Mean						
	Upper	1.84	4.43 (1.81)	1.46	1.43	
	Bound					

1.39

A total water area of approx. 430 km² for all tributaries (water area is from Landsat 497

ETM+ in 2015). 498

499

500

Fig. 1. Boxplots of CO₂ emission rates by floating chambers in the subtropical rivers
 (different letters represent statistical differences at p<0.05 by Mann-Whitney Rank Sum

503 Test). (the black and red lines, lower and upper edges, bars and dots in or outside the

504 boxes demonstrate median and mean values, 25th and 75th, 5th and 95th, and <5th

and >95th percentiles of all data, respectively). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article).

507

Fig. 2. Boxplots of k_{600} levels in the subtropical rivers (there is not a statistically

significant difference in k among sites by Mann-Whitney Rank Sum Test). (the black

and red lines, lower and upper edges, bars and dots in or outside the boxes

demonstrate median and mean values, 25th and 75th, 5th and 95th, and <5th

and >95th percentiles of all data, respectively). (For interpretation of the references

513 to color in this figure legend, the reader is referred to the web version of this article).

in Qijiang (b), and comparison of the developed model with other models (c) (others 519 without significant relationships between k and physical factors are not shown). The 520 521 solid lines show regression, the dashed lines represent 95% confidence band, and the red dash-dotted line represents the model developed by Alin et al (2011) (in panel b, 522 if several extremely values are removed, the revised model would be $k_{600} = 62.879$ FV 523 + 6.8357, R^2 = 0.52, p=0.019) (in panel c, 1-the revised model, 2-model from Ran et 524 al., 2017, 3-model from Ran et al., 2015, 4-model from Alin et al,, 2011, 5-model 525 from Liu et al., 2017) (1- k_{600} = 62.879FV + 6.8357; 2- k_{600} = 58.47FV+7.99; 3- k_{600} = 526 13.677exp (1.1FV); 4- k_{600} = 35 FV + 13.82; 5- k_{600} = 6.5FV² + 12.9FV+0.3) (unit of k in 527 models 1-4 is cm/h, and unit of m/d for model 5 is transferred to cm/h). 528

529